NELAC PT for Accreditation											
Fields of Proficiency Testing with PTRLs											
				Drinking Water							
			Ef	fective January 3, 2012							
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Footn	ote			Magenta = C	Changes		
			Trod = 1 Toviodo Exporimental 7 thalytoo	Blad = New Finallyte/Fredadi/Feetil				magorita = c	mangoo		
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	Criteria ^{3,4,5,6}		NELAC PTRL ⁷		
	Analyte	Analyte		3	а	b	С	d			
	Code	Code									
			Microbiology	CFU/100 mL					CFU/100 mL		
Drinking Water	0254	2500	Total Coliform ^{8,9,10}				with no false		Not Applicable		
Drinking Water	0255	2530	Fecal Coliform ^{8,9,10}				with no false		Not Applicable		
Drinking Water		2525	E.coli ^{8,9,10}		Nine out	of ten correct	with no false	negatives	Not Applicable		
				CFU (MPN)/mL					CFU (MPN)/mL		
Drinking Water	0258	2555	Heterotrophic Plate Count (MF, PP) ¹¹	5 to 500		Log transforn	n Mean ± 2 SI	D	2		
Drinking Water	0258	2555	Heterotrophic Plate Count (MPN) ¹²	5 to 500			n Mean ± 2 SI		2		
				CFU (MPN)/100 mL			L		CFU (MPN)/100 mL		
Drinking Water		2525	E.coli (MF) ¹¹	20 to 200			n Mean ± 2 SI		2		
Drinking Water		2525	E.coli (MPN) ¹²	20 to 200			n Mean ± 2 SI		2		
Drinking Water	0255	2530	Fecal Coliform (MF) ¹¹	20 to 200			n Mean ± 2 SI		2		
Drinking Water	0255	2530	Fecal Coliform (MPN) ¹²	20 to 200			n Mean ± 2 SI		2		
Drinking Water	0254	2500	Total Coliform (MF) ¹¹	20 to 200			n Mean ± 2 SI		2		
Drinking Water	0254	2500	Total Coliform (MPN) ¹²	20 to 200		Log transforn	n Mean ± 2 SI	D T	2		
			Trace Metals	μg/L					μg/L		
Drinking Water	0235	1000	Aluminum	130 to 1000	± 20% at <	500 ± 15% ≥	500 fixed acc	eptance limit	104		
Drinking Water	0140	1005	Antimony	6 to 50			cceptance lim		4.2		
Drinking Water	0001	1010	Arsenic	5 to 50		±30% fixed a	cceptance lim	it	3.5		
Drinking Water	0002	1015	Barium	500 to 3000			cceptance lim		420		
Drinking Water	0141	1020	Beryllium	2 to 20			cceptance lim		1.7		
Drinking Water	0226	1025	Boron	800 to 2000			cceptance lim		680		
Drinking Water	0003	1030	Cadmium	2 to 50			cceptance lim		1.6		
Drinking Water Drinking Water	0004	1040 1045	Chromium Hexavalent Chromium (VI)	10 to 200 5 to 50			cceptance lim		8.5 4.0		
Drinking Water	0091	1045	Copper	50 to 2000			cceptance lim		45		
Drinking Water	0284	1070	Iron	100 to 1800			250 fixed acc		80		
Drinking Water	0005	1075	Lead	5 to 100			cceptance lim		3.5		
Drinking Water	0236	1090	Manganese	40 to 900			cceptance lim		34		
Drinking Water	0006	1095	Mercury ^{13a}	0.5 to 10			cceptance lim		0.35		
Drinking Water	0237	1100	Molybdenum	15 to 130			cceptance lim		13		
Drinking Water	0142	1105	Nickel	10 to 500		±15% fixed a	cceptance lim	it	8.5		
Drinking Water	0007	1140	Selenium	10 to 100		±20% fixed a	cceptance lim	it	8.0		
Drinking Water	8000	1150	Silver	20 to 300			cceptance lim		14		
Drinking Water	0143	1165	Thallium	2 to 10		±30% fixed a	cceptance lim	it	1.4		
Drinking Water	0238	1185	Vanadium	50 to 1000			cceptance lim		42		
Drinking Water	0239	1190	Zinc	200 to 2000		±15% fixed a	cceptance lim	IIT.	170		
			Nutrients	mg/L							
Drinking Water	0009	1810	Nitrate as N	3 to 10		±10% fixed a	cceptance lim	it	2.7		
Drinking Water		1820	Nitrate + Nitrite as N	3 to 10			cceptance lim		2.6		
Drinking Water	0092	1840	Nitrite as N	0.4 to 2		±15% fixed a	cceptance lim	iit	0.34		

NELAC PT for Accreditation Fields of Proficiency Testing with PTRLs Drinking Water Effective January 3, 2012 Red = Previous Experimental Analytes Blue = New Analyte/Header/Footnote NELAC Analyte^{1,2} Acceptance Criteria 3,4,5,6 NELAC PTRL7 Matrix EPA Conc Range Analyte Analyte а b d Code Code **Minerals** mg/L mg/L Drinking Water 0287 1575 Chloride Drinking Water 0010 1730 Fluoride ±10% fixed acceptance limit 0.90 1 to 8 **Drinking Water** 0145 2000 Sulfate ±15% fixed acceptance limi **Drinking Water** 0286 10 to 40 8.5 1125 Potassium ±15% fixed acceptance limit **Drinking Water** 0029 1155 Sodium 12 to 5 ±15% fixed acceptance limit 11 Drinking Water ±15% fixed acceptance limit 26 0283 30 to 90 1035 Calcium Drinking Water 0285 Magnesium 2 to 20 ±15% fixed acceptance limit 1.7 1085 **Drinking Water** 0025 Ca Hardness as CaCO₃ 75 to 2 1550 ±15% fixed acceptance limit 64 **Drinking Water** 1755 Total Hardness as CaCO₃ 83 to 307 ±15% fixed acceptance limi 71 Inorganic Disinfection By-Products μg/L μg/L Drinking Water 0193 ±30% fixed acceptance limit 1535 **Bromate** 7 to 50 4.9 **Drinking Water** 0260 1540 **Bromide** Drinking Water 0194 1570 Chlorate 60 to 180 ±30% fixed acceptance limi 0195 Drinking Water 1595 Chlorite 100 to 1000 ±30% fixed acceptance limit 70 Misc Analytes mg/L mg/L 0027 Alkalinity as CaCO₃/L **Drinking Water** 1505 25 to 200 ±10% fixed acceptance limi **Drinking Water** MF/L 0253 1520 Asbestos .5 to 20 MF/L study mean 0.4164 Drinking Water -4 to +4 SI units Not Applicable 1620 Corrosivity ± 0.4 SI units fixed acceptance 0146 1645 Cyanide, Total1 **Drinking Water** 0.1 to 0.5 ±25% fixed acceptance limit 0.075 Dissolved Organic Carbon (DOC) **Drinking Water** 1710 1.3 to 13 0.9744 0.0960 0.0402 0.0700 1.1 **Drinking Water** 1895 Perchlorate 4 to 20 µg/L ±20% fixed acceptance limit 3.2 ug/l Drinking Water 0026 5 to 10 units ± 0.2 units fixed acceptance limit 1900 pН Not Applicable Residual Free Chlorine Drinking Water 0022 0.5 to 3.0 1.0000 0.0004 0.0776 0.0246 1945 0.37 **Drinking Water** 1990 Silica as SiO₂ 5 to 75 ±15% fixed acceptance limit 4.2 **Drinking Water** 0288 1610 Specific Conductance ±10% fixed acceptance limit µmhos/cm 130 to 1300 µmhos/cm Drinking Water Surfactants - MBAS 0.9804 0.0054 0.0673 0.0348 2025 0.1 to 1.0 0.020 1.0000 0.0065 **Drinking Water** Total Residual Chlorine 0.5 to 3.0 -0.0048 0.0723 0.40 1940 **Drinking Water** 0024 1955 Total Filterable Residue Drinking Water 0263 2040 Total Organic Carbon **Drinking Water** 0023 0.5 to 8 NTU NTU 2055 Turbidity¹ UV 254 Absorbance 0.05 to 0.7 cm-1 0.9919 0.0043 0.0872 0.0034 0.038 cm-1 **Drinking Water** 2060

NELAC PT for Accreditation Fields of Proficiency Testing with PTRLs Drinking Water Effective January 3, 2012 Red = Previous Experimental Analytes Blue = New Analyte/Header/Footnote Analyte^{1,2} Acceptance Criteria 3,4,5,6 NELAC PTRL7 Matrix EPA **NELAC** Conc Range Analyte Analyte а d Code Code Volatile Organic Compounds (VOCs)1 μg/L μg/L 0039 Drinking Water 4375 Benzene to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit Drinking Water 0037 4455 Carbon Tetrachloride to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit Drinking Water 0049 4475 Chlorobenzene 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0054 4610 1.2-Dichlorobenzene to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit **Drinking Water** 0041 4620 1.4-Dichlorobenzene to 20 $\pm 40\%$ at < 10 $\pm 20\% \ge 10$ fixed acceptance limit Drinking Water 0035 4635 1,2-Dichloroethane 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 1,1-Dichloroethylene Drinking Water 0034 4640 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0043 Cis-1.2-Dichloroethylene ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 4645 2 to 20 **Drinking Water** 0042 4700 Trans-1,2-Dichloroethylene ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 2 to 20 Drinking Water 0055 4975 Dichloromethane (Methylene Chloride) 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 2 to 20 **Drinking Water** 0044 1,2 Dichloropropane ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 4655 Drinking Water 0048 4765 Ethylbenzene 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 **Drinking Water** 0053 5100 Styrene 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0040 Tetrachloroethylene 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 5115 **Drinking Water** 0047 5140 Toluene 2 to 20 \pm 40% at < 10 \pm 20% \geq 10 fixed acceptance limit 1.2 **Drinking Water** 0036 5160 1,1,1-Trichloroethane 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0061 5165 1,1,2-Trichloroethane 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0038 5170 Trichloroethylene 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0076 1,2,4-Trichlorobenzene to 20 $\pm 40\%$ at < 10 $\pm 20\% \ge 10$ fixed acceptance limit 5155 Drinking Water 0032 5235 Vinyl Chloride to 50 ±40% fixed acceptance limit 0090 2 to 50 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 **Drinking Water** 5260 Total Xylenes μg/L μg/L **Drinking Water** 0019 4395 Bromodichloromethane to 50 ±20% fixed acceptance limit 4.0 to 50 ±20% fixed acceptance limit **Drinking Water** 0018 4400 Bromoform 4.0 ±20% fixed acceptance limit **Drinking Water** 0020 4575 Chlorodibromomethane to 50 4.0 Drinking Water 0017 Chloroform ±20% fixed acceptance limit 4505 to 50 4.0

NELAC PT for Accreditation Fields of Proficiency Testing with PTRLs Drinking Water Effective January 3, 2012 Red = Previous Experimental Analytes Blue = New Analyte/Header/Footnote Analyte^{1,2} Acceptance Criteria 3,4,5,6 NELAC PTRL7 Matrix EPA **NELAC** Conc Range Analyte Analyte d а b Code Code Volatile Organic Compounds (VOCs)¹ cont' μg/L μg/L **Drinking Water** 0067 4385 Bromobenzene ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit Drinking Water 0089 4390 Bromochloromethane Drinking Water 0069 4950 Bromomethane 5 to 50 ±40% fixed acceptance limit 3.0 Drinking Water 0079 4435 n-Butylbenzene Drinking Water 0086 4440 Sec-Butylbenzene ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit Drinking Water 0085 4445 Tert-Butylbenzene Drinking Water 0070 4485 Chloroethane 5 to 50 ±40% fixed acceptance limit 3.0 Drinking Water 0068 ±40% fixed acceptance limit 4960 Chloromethane 5 to 50 3.0 **Drinking Water** 0071 4535 2-Chlorotoluene ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit Drinking Water 0072 4540 4-Chlorotoluene **Drinking Water** 0057 ± 40% at < 10 ± 20% ≥ 10 fixed accepta 4595 Dibromomethane **Drinking Water** 0066 4615 1,3-Dichlorobenzene ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit **Drinking Water** 0088 4625 Dichlorodifluoromethane 5 to 50 ±40% fixed acceptance limit 3.0 Drinking Water 0056 1,1-Dichloroethane 4630 2 to 20 \pm 40% at < 10 \pm 20% \geq 10 fixed accepta 1.2 **Drinking Water** 0059 4660 1,3-Dichloropropane 2 to 20 1.2 **Drinking Water** 0060 4665 2,2-Dichloropropane 2 to 20 Drinking Water 0058 4670 1,1-Dichloropropene 2 to 20 Drinking Water 0152 Cis-1,3-Dichloropropene 4680 **Drinking Water** 0153 Trans-1,3-Dichloropropene 4685 Drinking Water 0081 4835 Hexachlorobutadiene 5 to 50 3.0 0084 **Drinking Water** 4900 Isopropylbenzene 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit 1.2 **Drinking Water** 0083 4910 4-Isopropyltoluene Drinking Water Methyl-tert-butylether (MTBE) 3.0 5000 5 to 50 Drinking Water 5005 Naphthalene 5 to 50 ± 40% at < 10 ± 30% ≥ 10 fixed acceptance limit 1.2 Drinking Water 0078 n-Propylbenzene 5090 Drinking Water 0063 1,1,1,2-Tetrachloroethane 5105 2 to 20 **Drinking Water** 0065 1,1,2,2-Tetrachloroethane 5110 2 to 20 ± 40% at < 10 ± 20% ≥ 10 fixed acceptance limit **Drinking Water** 0077 1,2,3-Trichlorobenzene 5 to 50 3.0 5150 **Drinking Water** 0087 5175 Trichlorofluoromethane 5 to 50 ±40% fixed acceptance limit 3.0 **Drinking Water** 0064 5180 1,2,3-Trichloropropane Drinking Water 0075 5210 1,2,4-Trimethylbenzene ± 40% at < 10 ± 20% ≥ 10 fixed accept Drinking Water 0082 5215 1,3,5-Trimethylbenzene μg/L μg/L 1,2-Dibromo-3-chloropropane (DBCP) Drinking Water 0045 4570 ±40% fixed acceptance limit 0.1 to 2 0.06 Drinking Water 0046 Ethylene Dibromide (EDB) 0.05 to 2 ±40% fixed acceptance limit 4585 Drinking Water 5180 1,2,3-Trichloropropane 0.2 to 2.0 ±40% fixed acceptance limit 0.12

			NELA	AC PT for Accreditation					
			Fields of Pr	oficiency Testing with PT	RLs				
				Drinking Water					
			Effe	ective January 3, 2012					
				, , _ , _ ,					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Footr	note			Magenta = 0	Changes
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	e Criteria ^{3,4,5,6}		NELAC PTRL ⁷
	Analyte	Analyte			а	b	С	d	
	Code	Code							
			Pesticides ¹	μg/L					μg/L
Drinking Water	0093	7005	Alachlor	2 to 20			cceptance lim		1.1
Drinking Water	0256	7025	Aldrin	0.2 to 2.5	0.8618	-0.0012	0.2025	0.0054	0.08
Drinking Water	0094	7065	Atrazine	2 to 20			cceptance lim		1.1
Drinking Water	0007	7160	Butachlor Chlordone (technical)	2 to 20			cceptance lim		1.1
Drinking Water Drinking Water	0097 0258	7250 7470	Chlordane (technical) Dieldrin	2 to 20 0.5 to 2.5			cceptance lim		1.1 0.28
Drinking Water	0238	7540	Endrin	0.2 to 2.5			cceptance lim		0.28
Drinking Water	0095	7685	Heptachlor	0.2 to 2.5			cceptance lim		0.14
Drinking Water	0096	7690	Heptachlor Epoxide (beta)	0.2 to 2.5			cceptance lim		0.11
Drinking Water	0172	6275	Hexachlorobenzene	0.5 to 5	0.8727	0.0048	0.1795	0.0195	0.22
Drinking Water	0112	6285	Hexachlorocyclopentadiene	2 to 20	0.8508	0.0882	0.2716	0.1073	0.49
Drinking Water	0012	7120	Lindane	0.2 to 2.5			cceptance lim		0.11
Drinking Water	0013	7810	Methoxychlor	2 to 20			cceptance lim		1.1
Drinking Water	00.0	7835	Metolachlor	2 to 20			cceptance lim		1.1
Drinking Water		7845	Metribuzin	2 to 20			cceptance lim		1.0
Drinking Water	0259	8045	Propachlor	1 to 10			cceptance lim		0.55
Drinking Water	0113	8125	Simazine	2 to 20			cceptance lim		1.1
Drinking Water	0014	8250	Toxaphene (total)	2 to 20			cceptance lim		1.1
Drinking Water	0244	8295	Trifluralin	1 to 10			cceptance lim		0.55
			Carbamates & Vydate	μg/L					μg/L
Drinking Water	0098	7010	Aldicarb	15 to 100		±25% fixed a	cceptance lim	it	11
Drinking Water	0099	7015	Aldicarb Sulfone	15 to 100		±25% fixed a	cceptance lim	it	11
Drinking Water	0100	7020	Aldicarb Sulfoxide	15 to 80		±25% fixed a	cceptance lim	it	11
Drinking Water		7195	Carbaryl	15 to 100			cceptance lim		11
Drinking Water	0101	7205	Carbofuran	15 to 150			cceptance lim		8.3
Drinking Water		7710	3-Hydroxycarbofuran	15 to 80			cceptance lim		12
Drinking Water	0245	7805	Methomyl	15 to 100			cceptance lim		12
Drinking Water	0114	7940	Oxamyl (Vydate)	15 to 100		±25% fixed a	cceptance lim	it	11
			424						
			Chlorinated Acid Herbicides ^{13d}	μg/L					μg/L
Drinking Water	0262	8505	Acifluorfen	10 to 100			cceptance lim		5.0
Drinking Water	0015	8545	2,4-D ^{13e}	10 to 100			cceptance lim		5.0
Drinking Water		8560	2,4-DB	20 to 120			cceptance lim		10
Drinking Water	0115	8555	Dalapon	10 to 100			cceptance lim		5.0
Drinking Water	0247	8595	Dicamba	20 to 100			cceptance lim		10
Drinking Water	0116	8620	Dinoseb	7 to 70	0.8480	0.8414	0.2628	0.0044	3.1
Drinking Water	0102	6605	Pentachlorophenol	1 to 25			cceptance lim		0.50
Drinking Water	0117	8645	Picloram	10 to 100			cceptance lim		5.0
Drinking Water	0016	8650	2,4,5-TP (Silvex)	10 to 100			cceptance lim		5.0
Drinking Water	1	8655	2,4,5-T	10 to 100		±50% fixed a	cceptance lim	I T	5.0
			Other Harbisides						, n
.	045-	05	Other Herbicides	μg/L	-		1	<u> </u>	μg/L
Drinking Water	0137	9390	Diquat ^{13f}	8 to 40			cceptance lim		4.0
	0138	7525	Endothall ^{13g}	80 to 500		±50% fixed a	cceptance lim	it	40
Drinking Water Drinking Water	0139	9411	Glyphosate	375 to 800			cceptance lim		300

NELAC PT for Accreditation Fields of Proficiency Testing with PTRLs Drinking Water Effective January 3, 2012 Red = Previous Experimental Analytes Blue = New Analyte/Header/Footnote Analyte^{1,2} Acceptance Criteria 3,4,5,6 NELAC PTRL7 Matrix EPA NELAC Conc Range Analyte Analyte d а Code Code Haloacetic acids μg/L μg/L Drinking Water 0250 9315 Bromochloroacetic Acid to 50 ±40% fixed acceptance limit **Drinking Water** to 50 ±40% fixed acceptance limit 3.0 0157 9357 Dibromoacetic Acid to 50 ±40% fixed acceptance limit **Drinking Water** 0158 9360 Dichloroacetic Acid 3.0 to 50 ±40% fixed acceptance limit **Drinking Water** 0160 9312 Monobromoacetic Acid 3.0 ±40% fixed acceptance limit **Drinking Water** 0161 9336 Monochloroacetic Acid 10 to 50 6.0 Drinking Water 0162 9642 Trichloroacetic Acid to 50 ±40% fixed acceptance limit 3.0 Adipate/Phthalate μg/L μg/L Drinking Water 0134 6062 Di(2-Ethylhexyl) Adipate 8 to 50 0.1250 Drinking Water Di(2-Ethylhexyl) Phthalate 0136 to 50 6065 PCBs in Water² μg/L μg/L ±100% fixed acceptance limit **Drinking Water** 0118 9105 PCBs as Decachlorobiphenyl 0.5 to 5 0.05 PCB Aroclor Identification Correct identification of Aroclor examined **Drinking Water** 8872 PAH μg/L μg/L Drinking Water 0122 0.8471 -0.0040 0.1854 0.0547 5580 Benzo(a)pyrene 0.2 to 2.5 Dioxin pg/L pg/L 0252 2,3,7,8-Tetrachloro-dibenzodioxin 0.8642 1.4865 0.1392 **Drinking Water** 9618 1.1445

			NFL AC	PT for Accreditation					
				iciency Testing with P1	TRI s				
				Drinking Water	INES				
			Effec	tive January 3, 2012	1	T	T		
			Dad Davieva Evanimental Analytes	Diversity American American				Manager	
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Foot	tnote			Magenta = C	nanges
NA-4-i	ED4	NELAC	Analyte ^{1,2}	Comp Bonne		Acceptance Criteria ^{3,4,5,6}			NELAC PTRL ⁷
Matrix	EPA Analyte	-	Analyte	Conc Range	а	b	c	d	NELAC PIRL
	Code	Code			a	ь	C	u	
1) For volatile an			I roviders must include a minimum number of analy	vtes using the criteria described be	low.				
			to ten analytes must include all of these analytes		1				
			twenty analytes must include at least ten of thes	e analytes or 80% ot the total, which	chever number	r is greater.			
			than twenty analytes must include at least sixtee				reater.		
If the calculated	ercentage	e of the total no	umber of analytes in the PT sample is a fraction, t	the fraction shall be rounded up to	the next whole	number.			
			one Aroclor, selected at random from among the	Aroclors listed (1016, 1221, 1232,	1242, 1248, 1	254 or 1260)	for		
the analysis of P	CBs as de	cachlorobiphe	nyl.						
			FR Part 141 are incorporated herein by reference.	Acceptance criteria for FoPTs no	t included in 4	0 CFR Part 14	41 are presen	ted in this tabl	e.
Acceptance limit									
			ented, Mean = $a^*T + b$; $SD = c^*T + d$ where T is the						
			nted, Mean = Robust Study Mean; SD = c*X + d v						
			Mean ±3SD), Mean = Robust Study Mean, SD = R						
			ion are generated using statistical analysis of stud			DT (
Quantitative Mici	obiology a	acceptance crit	teria (e.g., HPC) are based on the robust participa	ant Mean and SD determined from	each respectiv	/e PT study, a	itter outlier re	movai.	
1) If the lower on	antonoo	limit annorated	Lusing the criteria contained in this table is less th	van (a) 100/ of the popioned value	the lever see	ntonoo limito	ore set		
			ception of Microbiology analytes.	ian (<) 10% of the assigned value,	the lower acce	epiance iimiis	are set		
at 10% of the as:	lgried var	ue, with the ex	Leption of Microbiology analytes.	+					
5) If the lower ac	centance	limit generated	⊥ I using the criteria contained in this table is greate	ur than (>) 90% of the assigned value	e the lower a	ccentance lim	nite are set		
			ception of Microbiology analytes.	than (>) 30% of the assigned value	le, the lower a		lits are set		
at 50 /0 or the as-	l loa van	do, with the ex		+					
6) If the upper ac	ceptance	limit generated	d using the criteria contained in this table is less th	nan (<) 110% of the assigned value	e, the upper ac	ceptance limi	ts are set		
			exception of Microbiology analytes.						
7) NELAC Profic	ency Test	ing Reporting	Limits (PTRLs) are provided as guidance to labor	atories analyzing NELAC PT samp	les. These le	vels are the lo	west		
			from the lowest spike level for each analyte. The						
It is recognized to	nat in som	e cases (espe	cially for analytes that typically exhibit low recover	ry) the PTRL may be below the sta	ndard laborato	ry reporting			
limit. However, t	ne laborat	ory should use	e a method that is sensitive enough to generate re	sults at the PTRL shown. NELAC	PTRLs are als	so provided as	3		
			for all analytes with an assigned value equal to "	0", the PT Provider should verify th	at the sample	does not cont	tain		
the analyte at a	oncentrat	ion greater tha	n or equal to the PTRL.						
			to the participant laboratories shall contain bacter	ia that produces the following resul	ts when analy	zed:			
			oliforms and E.coli.						
			gative results for fecal coliforms and E.coli.		1	ļ	ļ		
			coliforms and E.coli.		1				
These limits are	or Presen	ice-Absence o	nly.						

DW_FOPT_2012_01_03.xls 7 of 9 11/8/2011

			NELA	C PT for Accreditation	n				
			Fields of Pro	oficiency Testing with	n PTRLs				
				Drinking Water					
			E ffe	ctive January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header	r/Footnote			Magenta =	Changes
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	Criteria ^{3,4,5,6}		NELAC PTRL ⁷
With	Analyte	Analyte	, many to	Cono rango	а	b	С	d	1122/1011112
	Code	Code							
The ten-samp	le set shal	be assigned	lot numbers and randomly composed of sample	s as follows:					
wo to four cam	olos contai	ning an aorog	 enic strain of Escherichia which will ensure pos	itivo roculto for total coliforms f	ocal coliforms and l	E coli whon an	alvzod		
y any of the US				lilive results for total colliditis, i	ecai collionnis and i	E.Coll.Wrien an	alyzeu		
			enic strain of Enterobacter species and/or other		re positive results f	or total colifor	ms		
id negative res	ult for feca	l coliforms and	d E.coli. when analyzed by any of the USEPA a	pproved methods.					
ne to two samr	oles contai	ning Pseudom	onas species and/or other microorganism which	n will ensure negative results fo	r total coliforms, fed	cal coliforms a	nd E coli		
			proved methods.	Will Crisure riegative results to	T total comonis, ice		110 E.0011.		
			any microorganism which ensure negative res	ults for total coliforms, fecal coli	forms and E.coli. w	hen analyzed	by any		
the USEPA ap	proved me	ethods.							
) Laboratories	analyzing	qualitative sar	Lagrands 1 1 2 2 2 2 2 2 2 2	lar study shall obtain a unique t	en-sample set for e	ach method			
ported as spec	, ,								
1) These limits	are for qua	intitative meth	ods using membrane filtration (MF) or pour-plat	e (PP) techniques.					
2) These limits	are for aus	ntitative meth	ods using most probable number (MPN) technic	20117					
-) These iiiiiis	are for que	initiative meti		ques.					
3) The following	recomme	nded sample	designs, which were used in past USEPA studie	es, should be used as model de	signs because other	er designs			
			ldy providers may vary their sample designs fro	m those shown. The specifics	within each sample	are within			
e discretion of	the PT stu	dy Provider.							
	a) Desig	criteria for M	 ercury – 1:1 (mole:mole as Hg) Mercuric Oxide	and Methyl Mercuric Chloride					
	u, Dooig	Tontona for ivi	The (molecular de rig) mercuna exide	and Mounty Morodine Cilionae.					
	b) Desig	n criteria for To	otal Cyanide – uncomplexed, e.g., Potassium C	yanide.					
	\								
	c) Desigi	criterion for	Turbidity - Formazin is the source for Turbidity.						
	d) Desig	criteria for C	L hlorinated Acid Herbicides - should be supplied	in the acid form of the target he	erbicide				
	u, zoo.g		Silvara de Cappilla	line acid icini ci inc tanger in					
	e) Desig	n criteria for 2,	4-D – should be at least half the butyl ester with	n the remainder in the acid form					
	0.5		Oladia and della Discat Discatida Ma		the death and and				
		nould be as Di	quat – Starting material is Diquat Dibromide Mo	nonydrate as required in the me	etnod. Ali assigned	values and re	portea		
	values Si	iouiu be as Di	quai.						
	g) Desig	n criteria for E	ndothall – Starting material is Endothall Monohy	drate as required in the method	I. All assigned valu	es and reporte	ed values		
	should b	e as Endothall							
	b) David	itilf- : D	anable ship hand. The same of the Description	and in board in one of the College	in a Annalana (1010	1004 1000 1	040 4040 4	054 4000	
			ecachlorobiphenyl – The source of the Decachl the Decachlorobiphenyl is to be calculated by the					∠54, 1260.	
			f the USEPA Method 508A.	ie provider from the concentrat	on or the Arociol us	sed to brehate	une sample		
	3,000.411	g aa.c 1 oi							

			NEL	AC PT for Accreditation					
			Fields of P	roficiency Testing with PT	RLs				
				Drinking Water					
			E f	fective January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Footr	note			Magenta = 0	Changes
								go	
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range	Acceptance Criteria ^{3,4,5,6}			•	NELAC PTRL ⁷
	Analyte	Analyte			а	b	С	d	
	Code	Code							
14) Laboratories	seeking or	maintaining N	NELAP accreditation for Total Trihalomethane	es must meet NELAC PT requirements f	or all 4 Trihal	omethane			
Fields of Proficie	ncy Testing	in the given:	study, by technology/method (Chloroform, Br	romoform, Bromodichloromethane, Chloromethane, Chlo	rodibromome	thane).			
Laboratories see	king or mai	ntaining NEL/	AP accreditation for Total Haloacetic Acids m	nust meet NELAC PT requirements for 4	out of 5 regu	lated			
Haloacetic Acid	Fields of Pro	oficiency Test	ting in the given PT study, by technology/met	hod (Monochloroacetic Acid, Monobrom	oacetic Acid,				
Dichloroacetic A	cid, Dibrom	oacetic Acid,	Trichloroacetic Acid).						